
Solution Adapted Nested Grid Refinement

for 2-D PDEs

James. M. Hyman1 and Shengtai Li1,2

1Theoretical Division, Mail Stop, B284

Los Alamos National Laboratory

Los Alamos, NM 87545

2 Department of Computer Science

University of California

Santa Barbara, CA 93106

September 14, 2004

Abstract

We have developed a robust, versatile adaptive mesh refinement (AMR) method in

2-D for problems where the fine-scale profile of sharp fronts should be resolved.

After comparing the effectiveness of different data structures and clustering algo-

rithms, we propose an easyly-implemented hierarchical data structure, which can be

done by any high level language, and an efficient clustering algorithm. We also investi-

gate and implement the adaptation based on the geometry, the use of staggered grids

and the choice of the refinement ratios. We have designed the software to minimize

the changes needed in existing codes to make full use of the adaptive algorithms and

provide full control by the user. Applications of the 2-D code to several nontrivial

problems (including both hyperbolic and parabolic problems) are presented.

1

LA-UR-98-5463 2

1 Introduction

In this paper, we extend the 1-D AMR data structure and algorithms [8] for the 2-D case. An

overview of the AMR method and a detail description of the data structure and algorithms

can be seen in [8]. To be concise, this paper concentrates on issues unique to the 2-D case.

Because of the difference of geometry, a patch (sub-grid) in 2-D AMR hierarchical data

structure can have multiple parents and siblings, which will affect the design of the data

structure and algorithms.

After briefly describing several data structures for hierarchical data in two (or more)

dimensions, we propose a a slight variation in our 1-D hierarchical data structure [8] and

Berger’s AMR data structure [4].

The clustering algorithm is sensitive, complex and largely determines the efficiency of

the 2-D AMR method. Therefore, we compare several clustering algorithms in Section

3.1 and propose a more robust and efficient one by combining different strategies together

and using an adaptive variable threshold. We modify the integration algorithm of our 1-D

AMR in Section 3.2 so that higher order time integration or implicit temporal integration

in method of lines (MOL) approach can be used. We study the impact of the boundary

condition on integration and “plug-and-play” approach in Section 3.3. We also investigate

other adaptation issues related to complex geometries, the choice of the refinement ratios

and the use of staggered grids in Section 3. We intend to designed a software to minimize

the changes needed in existing codes to make full use of the adaptive algorithms and provide

full control by the user. Therefore, we We describe the differences between the 1-D and 2-D

algorithms in the mechanism for user control of the refinement and integration. Finally, we

provide numerical examples to demonstrate the effectiveness of our approach.

2 Hierarchical Grid Structure

There are several ways to store the logical and physical positions of these points on each

of the AMR levels. The simple approach of storing the grid points on each level as a

multidimensional array p(ix, iy, ilevel) is wasteful of memory, because at higher refined levels,

only a small part of the grid is used.

The refinement areas in a hierarchical data structure are scattered on the coarse grids,

much like the nonzero elements in a sparse matrix. The local uniform grid refinement

(LUGR) by Verwer et al. [21] uses storage methods for sparse matrices based on a modified

condensed sparse row (CSR) format to store the grid information. This storage scheme does

LA-UR-98-5463 3

not need clustering, which is the most sensitive and complicated part of AMR [4]. However,

data management for CSR is more difficult and is incompatible with most existing PDE

software.

Berger’s hierarchical data structure clusters the refinement areas into logical rectangles,

called “patches”, and treats the patch as the basic data unit [5, 8]. The scalar attributes of

all the patches on the same level include the level number, integration time, time step-size,

number of ghost boundaries, number of buffer zones, refinement ratios to coarser and finer

grids, etc. These shared attributes form a LEVEL class at the top of the data structure for

a grid level. The separate attributes for each patch include the pointers to the parents and

children, number of grid points, logical grid index for each point, etc. Although a doubly

linked list is more convenient for operations between different levels, it needs more storage

and updating during refinement. Because the AMR process works up from the fine grids to

the coarser ones, the pointers to children are not often used and can be eliminated without

loss of efficiency.

Our construction of the data structure for 2-D AMR is almost the same as we have done

for our 1-D AMR method in Part I [8]. However, because of the difference of geometry

and the existence of multiple parents for one patch, pointers pj in each grid (patch) Gi =

|mi|p1|Gi,1|p2|Gi,2|...|pmi
|Gi,mi

| have different meaning from the 1-D case. The variable pj

contains the number of the parent coarse grids for the patch Gi,j and we use an auxiliary

array to store the indices of the parent grids to access the parent grids.

Another change from the 1-D AMR data structure is that each patch may have one or

more sibling patches, which share a common internal boundary. The position and solution on

the common internal boundaries and other overlapped ghost boundaries must be consistent

during the integration and before the refinement. The sibling pointers are not used by the

refinement algorithm. So they can be isolated from the data structure and computed in the

integration module after the refinement is completed. Because the siblings are used only to

update the boundary values for any two adjacent patches, we need not store the indices of

the siblings for each patch. Instead, we store the information to indicate which two patches

are siblings. (In practice, we use the index pi+N ∗ pj, where N is some number larger than

the maximum number of patches, to indicate that the pith patch and pjth patch are siblings

in the current level).

To make it easier to use the AMR software in existing codes and facilitate reusing the

integrator of a single grid, the patch structure contains all the characteristics of a single

grid, such as the ghost boundary information, starting logical coordinates and ending logical

LA-UR-98-5463 4

coordinates. To allow a flexible number of ghost boundary points we use a tensor-product of

two 1-D intervals (see [8]), Gi,j = [Ibx, Iex]× [Jbx, Jex], illustrated in Fig. (2.1). The boundary

conditions are used to extend the solution to ghost points outside the patch. This approach

can accommodate most other single grid data structures.

nybe(4)

nybe(3)

nybe(2)

nybe(1)

n
x
b
e
(
1
)

n
x
b
e
(
2
)

n
x
b
e
(
3
)

n
x
b
e
(
4
)

Grid Interior

Ghost Boundary

Ghost Boundary

G
h
o
s
t

B
o
u
n
d
a
r
y

G
h
o
s
t

B
o
u
n
d
a
r
y

Figure 2.1: Data structure for a single grid. The data stored for a single patch includes the grid, solution,

problem parameters and AMR pointers. This information is used by the the dynamic memory allocation

algorithm to minimize the workspace and memory (data transfer) operations.

3 The AMR Integration Algorithm for 2-D

The integration algorithm for 2-D AMR differs slightly from the 1-D case because of the

differences in data structure. The multiple parents for each patch in 2-D complicated the

communications between different refinement levels. Regrid(level), Boundary Collec-

tion(level) and Project(level, level+1) (see [8]) algorithms should be done carefully. The

sibling information must be used to maintain the consistency of any two siblings during

Advance(level). The Cluster(level) algorithm is the most difficult to extend to higher

dimensions and requires special treatment.

For hyperbolic conservation laws the solution data must be updated just before the

projection from the fine grid to the coarse grid, based on the flux conservation law at the

fine-coarse grid interface. We adopt Berger’s flux-correction method [3] at the coarse-fine

grid interfaces.

LA-UR-98-5463 5

3.1 Clustering

The clustering algorithm is sensitive, complex and largely determines the efficiency of the

2-D AMR method. We consider four similar approaches based on Bergers original algorithm

[4].

The nearest neighbor clustering algorithm originally used by Berger [4, 3] is highly heuris-

tic and time-consuming. First a cluster is defined consisting of a single (arbitrary) tagged

node. Other tagged nodes are added to the cluster if they are within a specified minimum

inter-cluster distance from the nearest node in the cluster. Finally, clusters are merged when

a node is determined to belong to more than one of them. It costs about O(n2) +O(p2) on

n nodes and p clusters requiring refinement.

The mean-cut clustering used by Quirk [17] starts by placing a minimal bounding box

around the cells that have been flagged to be refined. Then a ratio of the number of flagged

points to the total number of points in the box is computed. If the ratio is greater than

a threshold (0.5–0.75), the long edge of the box is bisected. The process is repeated until

the ratio is below the cutoff. This algorithm requires O(nlog(n)) operations. It operates

in computational rather than physical space and it produces no overlaps. Unfortunately,

there are some situations where this simple approach fails to produce a good clustering.

For example, for the flagged region in Fig.3.1, the mean-cut clustering produces 10 clusters

although 4 clusters are sufficient.

x

xxxx

x

x x x x x x

x

9

2

4

5

13 8

x

x

x

1

6

7

Figure 3.1: Example of mean-cut clustering. The “x” represents the flagged cell. The number beside each

line (around the boundary) denotes the order number of the cutting. It is done recursively, and requires a

total of 9 cuttings and produces 10 clusters (patches)

LA-UR-98-5463 6

The signature and cut clustering algorithm proposed by Berger and Rigoutsos [6] modifies

the definition of the cutting index in the mean-cut algorithm by computing a signature list

along each grid axis. The signature si is the number of flagged entries along the ith grid

surface. The zero entry in the signature list is used to indicate the best index to subdivide the

domain. If there is no zero entry, the second difference of the signatures ∆i = si+1−2si+si−1

is used to define zi+ 1

2

= |∆i+1−∆i|. The index with the largest zi+ 1

2

is chosen as the cutting

index. The recursion stops when either the ratio for the cluster is less than some threshold

or no cutting index is found (index is equal to 0).

The signature and cut algorithm produces excellent clusters in most cases and shares the

high efficiency of mean-cut clustering. For the same example (above), this algorithm requires

four cuttings and produces four clusters. We found that there are some special situations

where signature and cut clustering algorithm could be slightly improved. For example,

suppose the refinement area is along the diagonal and the flagged cells are displayed as in

Fig.3.2. The mean-cut clustering is necessary for this case.

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Figure 3.2: Example of signature and cut clustering There is no zero entry in the signature list. All the

zi+ 1
2
are equal to zero. So there will be no cutting and the whole region will be refined and only one patch

is produced.

To ensure the flux correction algorithm [3], which is performed at the fine-coarse interface,

LA-UR-98-5463 7

works correctly and easily, we require in our clustering that the grids be properly nested in

the strict sense that, except at physical boundaries, the level l grids are large enough to

guarantee that there is a border at least one level l cell wide surrounding each level l + 1

grid. Although all the flagged points are inside the coarse grids, the new finer grids after

clustering may not be properly nested in the coarse grids. This is because some unflagged

points are added to the patches during clustering, and those points may not be inside the

coarse grids. To ensure the proper nesting, the mean-cut may be used to cut the clusters

into two. However, just as we have pointed out, the signature and cut algorithm can produce

a better clustering in this case.

As we have noted in [8], the clustering procedure can start from any level that is less

than maximum level. If the clustering starts from level l > 1, the new grids generated at

level l + 1 may not be properly nested in level l in a strict sense, because the flagged cells

may reach the boundaries of the level l after a few time steps when level l grids remain the

same during that period. To avoid this problem, the coarse grids must have enough buffer

zones. In our refinement, we add different number of buffer zones for different levels: the

coarser levels have more buffer zones than the finer levels.

For memory allocation and parallel problems, we may wish to produce clusters of no

greater than a specified size. Therefore any cluster larger than that is bisected along the

longest axis (the mean-cut is performed here). Therefore, if a patch already produced satisfies

the threshold condition, it may need further cutting to ensure the proper nesting and/or

proper size.

The threshold value does affect the efficiency of the algorithm. The bigger the threshold,

the fewer unwanted points are involved, but usually more clusters result. More clusters

introduce more artificial internal boundaries which may increase the storage requirement

and computation time.

During our implementation, we found that a fixed threshold(> 0.5), which is constant

during the clustering, usually results in small patches when the depth of the recursion is

large. These small patches dramatically reduce the computational efficiency, especially on

computers with vector processing units. Every patch formed during the clustering requires

both internal and ghost boundary cells. In very small patches, the number of cells can even

be smaller than the number of ghost boundary cells.

These small patches can be eliminated by post processing the selection decisions after the

clustering. However, we have been unable to devise a robust post processing optimization

that is not problem-specific. We did observe that dynamically reducing the threshold on the

LA-UR-98-5463 8

recursion could improve performance. Since a small patch is produced only when the depth of

the recursion is large, if we decrease the threshold when the depth of the recursion increases,

the recursion will stop and a relatively big patch will be produced. In our implementation,

we decrease the threshold by 10% for each depth of the recursion. The threshold at the start

of the recursion can be large, such as 0.9 or 0.8. This approach does not add many unflagged

points to the flagged regions, because the patch becomes smaller when the recursive depth

increases.

Our overall algorithm combines signature and cut clustering with mean-cut clustering.

Given an initial logically rectangular domain and the scattered flagged cells on it, a cluster

of small patches that cover the flagged cells are output by the following algorithm. For

convenience, we will use the stack data structure, which has a property of last in first out

(LIFO). First push the current domain into stack.

1. If the stack is empty, STOP;

2. Pop out one domain from stack and set it as the current domain;

3. Shrink the domain boundaries so that it becomes a minimal bounding box for the

flagged cells in the current domain. If there is no flagged cell, go to 1.

4. Compute signature list si along each grid line.

5. Computed ratio r of flagged cells to the total number of cells.

6. Compute the threshold for the current recursive level by θj = θ0 · 0.9
j, where θ0 is the

initial threshold and j is the number of elements in the stack.

7. If r ≥ θj, then

(a) if the number of nodes in the current domain exceeds the restricted maximum

number, setting the cutting index as the middle of the longest axis (mean-cut)

and go to 10;

(b) if the resulting patch is not properly nested in the coarse grids, go to 8 (using the

signature to find the cutting index);

(c) otherwise, output the current domain as a new patch, and go to 1.

8. Find the cutting index by the following approaches:

(a) A zero entry in the signature list is used as the cutting index;

LA-UR-98-5463 9

(b) If there is no zero entry, the Laplacian second derivative of the signatures is

computed,

∆i = si+1 − 2si + si−1.

If zi+ 1

2

= |∆i+1 −∆i| is largest, this index is chosen as the cutting index;

9. If the cutting index is 0, then setting it as the middle of the longest axis.

10. Divide the domain into two along the cutting index, push them into stack. Go to 1.

To further reduce the number of the patches in a level, we also merge any two patches

that have a common edge. The new patches must have proper size that is no great than the

maximum size in any direction.

Our clustering algorithm is optimized for serial computation or parallel computation

with distributed memory and does not take into consideration the advantages of long vector

operations when there are vector processors. On vector machines there may be significant

advantages to modifying the shape of the patches to maximize the vector length.

3.2 Advancing the solution one time step

When there are multiple siblings for a patch, these siblings must be kept consistent during

the integration. During the integration, the internal cells are advanced with the PDE, while

the ghost boundary cells are interpolated in time and space from internal values on the

parent coarser grids. We can integrate each patch separately when the boundary routine is

called only once during one time step. The ghost cells are defined from the sibling patches,

or collected according to the external boundary conditions in the boundary routine at each

evaluation of the time derivative. For these values to be accurate, the patch must be solved

and advanced simultaneously with its sibling patches.

To illustrate this process, suppose the solutions at the boundary cells have been updated

before integration for a refinement level. To advance the solution with an explicit single-step

time integration method:

1. Compute the time derivatives of the boundary cells for each patch on the level using the

boundary values at the forward time (collected before integration of the current level)

and backward time, and keep them as constant during a one time-step integration.

2. Collect the external boundary values using the external boundary conditions if any

patch reaches the external boundaries.

LA-UR-98-5463 10

3. Evaluate the time derivative of the internal cells for each patch on the level.

4. Calculate the intermediate solution for each patch with the time derivatives from 1

and 2.

5. Update the solution at the boundary cells for each patch with more accurate values

from its sibling patches.

6. Goto 2 until the integration completes one time step.

When the integration method is implicit, then the connectivity between different patches

must be accounted for when using an iterative method to be sure the solution on each patch

has the appropriate updated value when the implicit method is updating the solution. In

particular, the boundary conditions in an overlapping region must be carefully applied be

sure the approximation is accurate.

An existing code for a single grid can usually be quickly adapted to this approach by

either directing using the time derivative by mapping the solution and data structures back

and forth between and using the original solver routine as a “black box” to advance the

patch data a single time step. We call this second approach “plug-and-play.”

3.3 Boundary conditions

Each of the four sides of a patch can have an external or internal boundary. The boundary

conditions are treated the same as in 1-D [8] by defining the solution in a cocoon of ghost

points surrounding each patch. The boundary values are assigned during the refinement,

while the values of the internal boundary cells at the forward time are collected from the

parent coarse grid before the integration.

Four kinds of external boundary condition routines are supplied in our AMR system:

inflow (Dirichlet), outflow (extrapolated), reflecting (symmetric and antisymmetric), and

periodic. The inflow boundary conditions often have analytic values, for example, the amount

of material being ejected from a source. The outflow boundaries typically have extrapolated

values. A second order extrapolation is used when needed. The reflecting boundaries are

like mirror images. The scalar variables, such as density, may have symmetric values to their

internal images, while the vector variables, such as velocities, may have antisymmetric values

to their internal images specifies which kind of conditions is used on an external boundary

or supply his own external boundary routines. Our AMR system has a switch for the user

LA-UR-98-5463 11

to input special boundary conditions for some specific problems. Because a patch may not

have all of the 4 external boundaries, the user must treat each boundary separately.

There are three sources for the boundary collections: sibling patches, external boundaries,

and parent coarse patches. Unlike most AMR implementations, which collect the boundary

values from all of the three source at once, we do the boundary collections at different times

for different sources. The ghost boundary values are also stored during our integration and

refinement. This enables us to use our monitor function to flag the refined cells and allows

a high order time integration for an MOL approach.

Using patch translation (see also [14]), we treat the periodic boundary as an internal

boundary [8]. The translation can be done easily by adding a constant to the patch structure

and does not need additional instrumentation for the boundary treatment. After translation,

it is possible that a sibling of one patch at one side may be on the opposite side. This is

identified and tracked and monitored by the consistency maintenance algorithm.

If the boundary routine is called only once during one time step integration, we can do

the “plug-and-play” directly. The claw2 solver in CLAWPACK belong to this category can

be plugged it into our AMR solver without any recoding. If the boundary routine is called

more than once during one time step integration, as in a high-order Runge-Kutta method,

we must recode the time integration routines with the algorithm discussed in section 3.2.

The recoding is much easier when the method is implemented with time derivative being

explicitly defined. Thus, we update all the patches as a single level for each stage in a

multigrid method before proceeding to the next stage. We have supplied an interface for

second and fourth order Runge-Kutta methods.

3.4 Geometric complexity adaptation

Problems with complex geometry caused by irregular boundary curves and embedded phys-

ical objects (see [13] and its references) can be solved by a Cartesian grid method, which

covers the irregular regions with uniform grid, and uses the standard Cartesian grid meth-

ods for regular cells and special treatment for the boundary cells. This approach has proven

effective using rotated boxes [9], flux-redistribution procedures [15], and merging procedures

[16]. The Cartesian grid method requires storing the intersection between the boundary

curve of the physical domain and the uniform mesh for the boundary conditions and the

approximation of spatial derivatives. A major advantage of this approach is the simplicity

of discretizing the PDEs on a uniform grid.

An irregular region can also be descritized with a body-fitted structured grids [20]). It is

LA-UR-98-5463 12

more difficult to derive high order methods for the irregular boundary fitted grids. Because

the AMR method is based on the local data structure not the physical location, it can still

be used on these grids. If a body-fitted structured grid is used, it affects the storage and

memory requirements, and dynamic memory allocation for the AMR system. We know that

for a uniform mesh, we do not need to store the physical positions of each point. However,

for curvilinear grids, the physical positions of each point must be stored for later use. Many

AMR systems consider only one kind of grid or store the physical positions for all kinds of

grids. Our AMR system has a switch, which is input by the user, between curvilinear grids

and other kinds of grids. If a curvilinear grid is used, we store the physical position for each

point. Otherwise, we assume that the grid is tensor-product or uniform, and only physical

positions for each direction are stored.

Another type of geometry complexity is related to the topology of the domain. For

instance, the domain may be of L or U shape, or has some holes internally. We treat this

case by splitting the domain into several logical rectangular domains, which imply that the

base grid may contain several subgrids instead of one. The external boundaries of the base

grid will be given by the external boundaries for each hole and the whole logical rectangular

domain.

To reduce the effects of the physical coordinates during the integration, we design as

many of our algorithms as possible in the computational domain. However, there are some

algorithms which must use the physical positions for the grids. The physical positions for

the grids are needed to evaluate the spatial derivatives, for the Select(level) (see Fig. 4.1

of [8]) algorithm (which flags the bad points for the next refinement level) and (when using

the CFL condition) to control the time step.

3.5 Choosing the time refinement ratio adaptively

In most AMR systems, the refinement ratios between different levels are given by the user

and are not allowed to change during the integration. We have investigated choosing the

efficient refinement ratios adaptively during the refinement.

To optimize the refinement ratios, we normalize the problem and define

• r is the refinement ratio for two adjacent levels,

• a is the ratio of the areas between the fine grid regions and coarse grid regions,

• 1 is the integration cost of the coarse grid,

LA-UR-98-5463 13

• 1 time step-size for the coarse grid is equal to r time step-sizes on the fine grid (i.e.

for hyperbolic problems).

• h is the overhead cost introduced by the AMR.

Then the total integration cost for two adjacent levels consists of the cost of one integration

on the coarse grid, r times the integration cost on the fine grid, and the overhead cost due to

the AMR procedures (including the refinement, injection, projection, boundary-collection,

etc.) between them.

The total cost is given by

1 + r ∗ ra ∗ ra+ h = 1 + r3a2 + h.

If we do not refine between them and replace the coarse grid with the fine grid completely,

the cost will be r3.

To find the optimal r, let

(1 + r3a2) + h ≤ r3.

Most AMR systems [17], have an overhead cost h below 15% of the integration cost. There-

fore, an optimal refinement ratio r satisfies

(1 + r3a2)(1 + 0.15) < r3.

If 1− 1.15a2 > 0, i.e., a < 0.9325, then

r > (
1.15

1− 1.15a2
)1/3.

The refinement ratio should be kept as small as possible to reduce the total integration

cost. If a ≥ 0.9325, the whole coarse grid should be replaced by the fine grid to reduce the

overhead due to AMR. For a < 0.9325, the following table shows the relationship between r

and a.

r 2 3 4 8

a < 0.863 0.912 0.924 0.931

If we choose r = 2, then a < 0.863. That is, the refinement ratio r = 2 is optimal, when

the ratio between the number of bad cells and the total number of cells is less than 0.863.

In practice, the ratio a is usually much less than 0.863. That is why r = 2 is an appropriate

default refinement ratio in most AMR systems.

We adaptively choose the refinement ratios by starting with r = 2 and unpacking and

storing all the grids separately. For example, if the current refinement ratio is r = 4 between

LA-UR-98-5463 14

two adjacent levels, then these two levels are separated into three levels, with r = 2 between

the two adjacent levels and the middle level is just twice as coarse as the finer level. Next,

we refine the temporal grid appropriately (e.g., for hyperbolic PDEs the time refinement is

the same as in space.) Finally, we merge any two adjacent levels for which a < 0.8. This

process is done recursively until no levels can be merged. The refinement ratios are reset

during the merging process.

This optional adaptive procedure involves a little overhead in storage and computation

but is worthwhile if any two levels are merged.

3.6 Finite difference and finite volume method

We have incorporated both the finite difference, which is node-centered, and finite volume

method, which is cell-centered, in our AMR system. There are some differences between the

two methods. First the communication between the coarse and fine grid is totally different

because the solutions locate in different place and have different meaning. The cell-centered

solution for finite volume method means an average value in a cell whereas the node-centered

solution for finite difference method means the solution value on that nodes. Second, for an

nx by ny grid, only nx−1 by ny−1 positions have solution values for a finite volume method

, which will complicate the management of data structure.

We have designed our AMR system in such a way that both the finite difference and

finite volume method will work well.

4 User Control over the Adaptively

The user control and format of the grid file for 2-D is just the same as our 1-D AMR software

[8] except that each patch consists of two corners (each corner has two coordinates) instead

of two ends (each end has one coordinate).

The logical coordinates and any point in a uniform mesh are easily computed from the

base grid information and the physical positions of two corners of a patch. However, for a

curvilinear grid, we must locate the logical cell in the base grid which contains the corner.

To avoid the O(n2) cost of a line-sweep to check if the cell contains the corner. We use the

mean-cut algorithm. The mean-cut algorithm for clustering is done in the computational

domain but here it must be done in the physical domain. We recursively check which half of

the logically rectangular domain contains the corner, and then eliminate the half that does

not contain the corner, divide the remaining half in half and continue until only one cell that

LA-UR-98-5463 15

contains the corner is left.

To locate the half of the logical rectangular domain which contains the corner, we compare

the corner point with the middle grid line of the domain. Because the middle grid line may

not be a straight line, we should find a straight line which has the same relationship to the

corner point as the middle line. First we locate the point on the middle line closest to the

corner. Then the line segment connected to the nearest point on the middle line can be used

to determine in which side the corner point is located.

Because overlaps are not allowed in our AMR system when the refinements are input

by the user, we check first to see if there is overlap among the inputs and if there is, we

re-cluster the input patches to eliminate the overlap.

Instead of inputting patch by patch in the grid file, the user can input a polygonal region

which specifies the forced refinement area. The vertices of the polygon are used to define

the region. Our program will read the data, find the logical coordinates for the refinement

regions, and then cluster them into the patch structure automatically.

5 Numerical Experiments

In the test examples, we refine during the integration of the coarse grid and fix the refinement

ratio as r = 2. We choose the number of buffer zones to be 1 and the number of ghost

boundaries to be 2.

5.1 Cluster Examples

Because the clustering algorithm is crucial to the 2-D AMR system, we first present two

examples of clustering.

5.1.1 Burgers’ Equation

The first example is Burgers’ equation

ut + uux + uuy = 0.005(uxx + uyy), (1)

with an analytic solution

u(x, y, t) =
1

1 + exp(x+ y − t)/(2r)
,

The solution is a steep wave front propagating to the right top corner. We start the in-

tegration at t = 0.75 and define the analytic solution in our advance(level) routine. The

LA-UR-98-5463 16

flagged points are distributed along the diagonal, and all of the zi for the signature list are

zero. Therefore, there is no cutting return for the signature and cut algorithm, and only one

patch is produced for any level if the signature and cut clustering is used. After combining

the mean-cut clustering with the signature and cut algorithm, we get a better result (see

Figure 5.1.1). We also compare the results for a variable threshold (theta0=0.8) and a fixed

threshold (0.7) in our clustering algorithm. We use 4 refinement level. The total number of

points for the finest level with the variable threshold increases about 10% compared with the

fixed threshold (0.7) method. However, the total number of patches for the level decreases

from 78 to 18.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

Figure 5.1-a: Clusters of the finest level with a
variable threshold (start with 0.8) for Eq. (1) at
t=1.0. A total of 18 clusters are generated.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

Figure 5.1-b: Clusters of the finest level with a
fixed threshold (0.7) for Eq. (1) at t=1.0. A total
of 78 clusters are generated.

5.1.2 Rotating Cone Problem

The next example is a hyperbolic problem used in [4].

ut − yux + xuy = 0, (2)

LA-UR-98-5463 17

with initial condition

u(x, y, 0) =

{

0, if (x− 0.5)2 + 1.5y2 ≥ ε

1− ε((x− 0.5)2 + 1.5y2), if (x− 0.5)2 + 1.5y2 < ε

on a rectangular domain −1.1 ≤ x ≤ 1.1, −1.1 ≤ y ≤ 1.1.

The parameter ε in [4] is 1

2
. Here we set ε = 1

6
(also see [1]). The solution

u(x, y, t) = max(0, 1− 16[(x cos(t) + y sin(t)− 0.5)2 + 1.5(y cos(t)− x sin(t))2])

is a cone rotating counterclockwise about the origin. We use four refinement levels and a

base grid, ∆x = ∆y = 0.05. The clustering and refinement algorithms were first tested

using the exact solution in the integrator. The variable threshold (starting from 0.8) method

results in 13 patches in the finest level (Fig. 5.3-a) while fixed threshold (0.7) method results

in 30 patches in the finest level (Fig. 5.3-b). The figures illustrate how the smaller threshold

results in many small patches at the edge of the cone. The smallest patch contains only 4

cells while the number of ghost boundary cells for this patch is 36.

5.2 Shock wave problem

5.2.1 Inviscid Burgers’ Equation

As pointed out in Part I [8], our AMR system can easily incorporate legacy codes for a single

mesh. The inviscid Burgers’ equation,

ut + uux + uuy = 0, (3)

with discontinuous initial condition

u(x, y, 0) =

{

1.0 if 0.1 ≤ x ≤ 0.6 and 0.1 ≤ y ≤ 0.6,

0.1 otherwise,

and periodic boundary conditions, is chosen from the test cases of CLAWPACK [12] for 2-D,

The solution is a shock wave propagating to the top right corner of the domain. When the

shock arrives at the boundary, it emerges from the opposite side and corner because of the

periodic boundary condition. We use CLAWPACK routine claw2 as a solver for the single

grid and provide a dummy (stub) boundary routine but do not modify any internal code. We

provided an interface that mapped between our parameters and those in CLAWPACK. We

use three refinement levels and a 50× 50 base level. The clusters and the contour plots are

shown in Fig. 5.4-a. To investigate the effectiveness of the algorithm of handling periodic

boundary in our AMR system, we compare the solution with one solved on an extended

domain to [0, 1.2]× [0, 1.2], where the shock does not reach the boundaries yet. The contour

plots are shown in Fig. 5.4-b.

LA-UR-98-5463 18

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

y

x

Figure 5.3-a: Result of clustering with variable threshold for Eq. (2) at time t = 0.78

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

y

x

Figure 5.3-b: Result of clustering with fixed threshold (0.7) for Eq. (2) at time t = 0.78

5.2.2 Double Mach Reflection

The double Mach reflection of a strong shock [22] [3] is given as Euler equations for 2-D

gas-dynamics:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu
2)x + (ρuv)y = 0,

LA-UR-98-5463 19

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

Figure 5.4-a: Clusters for Eq. (1) at time t = 1.0.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Figure 5.4-b: Contour plots for Eq. (1) at time t=1.0. The solid lines represent the contours for the
domain [0, 1]× [0, 1]. The long dashed lines represent the contours for the extended domain [0, 1.2]× [0, 1.2].
17 contours from 0.15 to 1.0 are plotted.

(ρv)t + (ρuv)x + (ρv
2)y = 0, (4)

et + ((e+ p)u)x + ((e+ p)v)y = 0,

where p = (γ − 1)(e− 1

2
ρ(u2 + v2)) is pressure.

The reflecting wall lies at the bottom of the [0, 4]× [0, 1] computational domain starting

from x = 0.1. Initially a right-moving Mach 10 shock is positioned at x = 0.1, y = 0, and

LA-UR-98-5463 20

makes a 60◦ angle with the x-axis. For the bottom boundary, the exact post shock condition

is imposed for the part from x = 0 to x = 0.1 and a reflective boundary condition is used

for the rest. At the top boundary of the computational domain, the flow values are set to

describe the exact motion of the Mach 10 shock (see [22] for a detailed description of this

problem).

The Mach stem solution obtained using claw2 on a single grid is severely kinked (see Fig.

5.5-d). We tracked the problem to the CLAWPACK approximate Riemann solver (Roe’s

method) which can admit spurious solutions that are triggered by an incorrect treatment of

shear waves. The kink point on the Mach stem has also been observed by by Quirk [17].

The solution obtained with, second order MUSCL, provided by Colella [7] did not have

this problem. We use three refinement levels and a 200×50 base grid. The clustering for the

finest level grid at t = 0.2 is shown in Fig. 5.5-a. The contour plots on part of the domain:

[0, 3]× [0, 1] are shown in Fig. 5.5-b.

5.2.3 A Mach 3 wind tunnel with a step

This model problem, which has been used in [22] for uniform grid, solves the same equation

(5) . The setup of the problem is the following: The wind tunnel is unit length wide and

3 length units long. The step is 0.2 length units high and is located 0.6 length units from

the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow.

Reflective boundary conditions are applied along the walls of tunnel and in-flow and out-

flow boundary conditions are applied at the entrance (left-hand end) and the exit (right-hand

end). We did not perform any special techniques (see [22]) on the corner of the step. The

second order MUSCL [7] is used as a solver for the single grid. The initial base grid is

divided into two patches: [0.0,0.6]×[0.0,1.0] and [0.6,3.0]×[0.0,1.0]. Two refinement levels

are used during the integration. The clustering and the contour plot is shown in Fig. 5.6.

The CLAWPACK has the same difficulty as in double Mach reflection problem to resolve

the Mach stem on the left side the step.

5.3 Nonlinear Diffusion Equation

The nonlinear diffusion equation

ut = (u
3)xx + (u

3)yy, (5)

proposed by Aronson [2], originates from a diffusion phenomena of the flow when the internal

object is removed from the flow field.

LA-UR-98-5463 21

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5.5-a: Clusters of the finest level for
double Mach reflection problem at t=0.2 by
AMR with plugging in the MUSCL solver.
The base grid is of 200× 50.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5.5-b: Contour plot for double
Mach reflection problem at t=0.2 by AMR
with plugging in the MUSCL solver. Only
density is plotted. 30 contours from 1.731 to
20.91 are used.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5.5-c: Clusters of the finest level
for double Mach reflection problem at t=0.2
by AMR with plugging in the CLAWPACK
solver. The base grid is of 200× 50.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5.5-d: Contour plot for double
Mach reflection problem at t=0.2 by AMR
with plugging in the claw2 solver of the
CLAWPACK. Only density is plotted. 30
contours from 1.731 to 20.91 are used.

The initial condition

u(x, y, 0) =

{

0, if (x− 0.5)2 + (y − 0.5)2 < 0.04

0.5, otherwise in [0, 1]× [0, 1].

collapses in to fill the vacant hole. The wave front is steep and moves fast before it becomes

only one point. Because only the region near the wave front requires high accuracy, and that

region is becoming smaller and smaller due to the diffusion, AMR can be used to advantage.

The position of a circular steep wave front can be derived via theory. We compare our

numerical solution for the position of the front versus time in Fig. 5.7-c. In this comparison,

LA-UR-98-5463 22

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

y

x

Figure 5.6: Cluster and contour plot for Mach 3 wind tunnel problem at t=4.0 by AMR with plugging in

the MUSCL solver. of the CLAWPACK. Only density is plotted. 28 contours from 0.25 to 7.0 are used.

we define position of the wave front to be the average distance to (0.5,0.5) from all the points

whose solution values are between 0.002 and 0.02.

We use three-level refinement and a 50 × 50 base grid. We use centered difference for

the spatial discretization and a second order Runge-Kutta method for the time integration.

Because it is an explicit method, the time step is chosen based on both stability and accuracy.

For each level, we compute the time steps based on the requirement of accuracy and stability,

and choose the smaller one. To keep the tolerance for this problem less than 1.0E-5, we choose

the initial time step for the base grid to be 0.0001.

The contour plots of the solution and the grid clusters are displayed in Figs 5.7-a and

5.7-b. We also compared these solution with four levels of refinement and observed few

differences between the results 5.7-c.

6 Conclusions

We have presented our implementation of AMR in 2-D and the differences between it and

our 1-D AMR [8]. We propose a slight change in the existing clustering algorithms, a new

algorithm for adaptively choosing the refinement ratios, user control over the adaptation, and

high-order or implicit temporal integration, etc. The data structure and algorithms involve

relatively little overhead in refinement and data management, and can be implemented

effectively with any high level language.

LA-UR-98-5463 23

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.016

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.032

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 t=0.048

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 t=0.060

Figure 5.7-a: Contour plot for diffusion problem (5). 15 contours from 0.3 to 0.48 are used.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.016

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.032

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.048

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.060

Figure 5.7-b: Clustering for diffusion problem (5)

The adaptive mesh modules are completely separated from the PDE solver for a single

grid and can usually be incorporated into existing codes, which work for a single grid, with

little effort. We have proposed a new boundary collection and integration algorithm, which

allows a semi-discretized PDE solver and method of lines approach to plug into our AMR

system easily. Our design is general-purpose and can be used to solve a wide class of time-

LA-UR-98-5463 24

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-3 -2.5 -2 -1.5 -1

lo
g(

r)

log(t)

3 level refinement
4 level refinement

Figure 5.7-c: Log-Log plots for front position versus time

dependent PDEs.

References

[1] D. C. Arney and J. E. Flaherty, A two-dimensional mesh-moving technique for time-

dependent partial differential equations, J. Comput. Phys., 67 (1986), 124-144.

[2] D. Aronson, Personal communication, 1997.

[3] M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics,

J. Comput. Phys. 82 (1989), 64-84.

[4] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential

equations, J. Comput. Phys. 53 (1984), 484-512.

[5] M. J. Berger, Data structures for adaptive grid generation, SIAM J. Sci. Stat. Comput.

3 (1986), 904-916.

[6] M. J. Berger and I. Rigoutsos, An algorithm for point clustering and grid generation,

IEEE Trans. on Systems, Man, and Cybernetics, 21 (1991).

[7] P. Colella, Multidimensional upwinding methods for hyperbolic conservative laws, J.

Comput. Phys., 87 (1990), 171-200.

LA-UR-98-5463 25

[8] J.M. Hyman, and S. Li, Interactive and dynamic control of adaptive mesh refinement

with nested hierarchical grids, Los Alamos National Laboratory Report (1998).

[9] R. LeVeque and M. Berger, A rotated difference scheme for Cartesian grids in complex

geometries. AIAA Paper (1991), CP-91-1602.

[10] S. Li and L. Petzold, Moving mesh method with upwinding schemes for time–dependent

PDEs, J. Comput. Phys. 131 (1997), 368–377.

[11] S. Li, L. Petzold and Y. Ren, Stability of moving mesh systems of partial differential

equations, SIAM J. Sci. Comput. 20 (1998), 719–739.

[12] R. LeVeque, CLAWPACK codes for hyperbolic conservative laws, in Netlib, 1995.

[13] J.E. Melton, Automated Three-Dimensional Cartesian Grid Generation and Euler Flow

Solutions for Arbitrary Geometries, PhD Thesis (1996), UC Davis.

[14] H. Neeman, Autonomous Hierarchical Adaptive Mesh Refinement for Multiscale Simu-

lation, Ph.D thesis, (1996), Department of Computer Science, University of Illinois at

Urbana-Champaign.

[15] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome, An Adaptive

Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions, J. of

Comput. Phys. 120 (1995), 278-304.

[16] J. Quirk, An alternative to unstructured grids for computing gas dynamic flows around

arbitrary complex two-dimensional bodies, Computers Fluids 23(1994), 125-142.

[17] J. Quirk, An Adaptive Grid Algorithm for Computational Shock Hydrodynamics, Ph.D

thesis (1991), College of Aeronautics, Cranfield Institute of Tech.

[18] C. W. Shu and S. J. Osher, Efficient implementation of essentially non-oscillatory shock

capturing schemes II, J. Comput. Phys., 83(1989), 32-78.

[19] G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyper-

bolic conservation laws, J. Comput. Phys. 43 (1978) 1-31.

[20] J. F. Thompson, Z. U. Wasi and C. E. Mastin, Numerical grid generation, (North-

Holland, New York, 1985).

LA-UR-98-5463 26

[21] J. G. Verwer, J. G. Blom, VLUGR2: A vectorized local uniform grid refinement code

for PDEs in 2D, Report NM-R9307, (1993) CWI.

[22] P. R. Woodward and P. Colella, The numerical simulation of two-dimensional fluid with

strong shocks, J. Comput. Phys.54 (1984), 115-173.

